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In a study of the graphs of chemical structures [l, 2 1, it becanle of interest 
to ascertain the Hamilton circuits (a closed circuit of edges through all the 
vertices) of trivalent graphs, and especially of the convex polyhedra. ‘J‘nit [3] 
had conjectured that these polyhedra always had EIatnilton circuits-for brevity 
we will now say had circuits. In [4], however, Tutte has demonstrated a 
counter-example c[ith 46 vertices. Between about 12 or 14 vertices and 46, the 
territory has hardly been explored. 

Grace [S] has recently presented a computer tabulation of the polyhedra 
through 18 vertices, affording a convenient opportunity to scan them for cir- 
cuits, which were found in every instance. As Grace has noted, his criterion 
for isomorphism, “equisurroundedness” of the sets of faces is not strictly suf- 
ficient and his list may still be incomplete. As the isomorphisni of circuibs is 
fairly readily computed, this approach may be useful in further extensions of 
such studies. 

The work needed to demonstrate a circuit is curtailed by the reducibility of 
any triangular face: A circuit through a triangle is equivalent to that through 
a node: 

‘I‘hat is to say, to describe a circuit a triangular face can be shrunk down to a 
node. In effect, by induction, if all n-hedra have circuits, so will all (n+2)- 
hedra \\-ith triangular faces, and we need 0111~~ examine those without. Table 1 
shows that only 5.5 forms need to be studied. 

Grace display-ed the polyhedra as face-incidence lists. A computer program 
translated these into vertex-incidence lists. Each vertex being identified as a 
face-triple, those vertices are joined which share t\vo faces. The vertex-incidence 
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TABLE 1. Count of Trivalent Convex Polyhedra 
-- -- 

Vertices 
n 

Faces 
f 

COU?d 
Total [j] 

Count 
No Triangles 

Presmt 

count 
No J-connected 

Regions 

4 4 
6 5 
8 6 

10 7 
12 8 
14 9 
16 10 
18 11 

1 0 0 
1 0 0 
2 1 1 
5 1 1 

14 2 2 
50 5 4 

233 12 10 
1249 34 26 

- - 

1555 55 44 

list was then processed by a binary chained ‘search’of’lalternative paths; hence 
the search is always (<2”, in contrast to the n! scope of a systematic permutation 
of the vertices. (A much more efficient algorithm has been discovered and is 
outlined as an appendix.) 

Table 2 displays a circuit for each of the 55 polyhedra. The other polyhedra 
of order s 18, and some of higher order can be developed from these by expand- 
ing nodes into triangles, a process that can be iterated. 

The circuits lend themselves to a compact code from which the graph of a 
polyhedron is quickly constructed. Draw a polygon with vertices marked l(l)%. 
Each successive character of the code denotes the span of a chord drawn from 
the next vacant vertex. Thus the prism would be 2, 3, 2 or BCB, and Hamilton’s 
own example, the dodecahedron, is DJGDMJGDGD.‘There will be n/2 characters 
(to be sure the List one is redundant, being fixed by its predecessors). The 
letters A, B, C . . . stand for spans of 1, 2, 3 . * . vertices. A and B do not 
appear in our list; A would connote a self-looped edge and B a triangular face. 

Only one of the sometimes numerous circuits of each polyhedron is shown: 
it is merely the first one discovered by the computer search, but it has been 
placed in canonical form with respect to rotation and reflection of the poly- 
gon [21. 

The complete list of the IHamilton circuits for each graph of Table 2 gives 
further insight into the composition of circuit-free graphs. Kxtracting one node 
from a polyhedron leaves a cut graph with three cut edges, e.g., a triangular 
region is the residue of a tetrahedron. In the first instance, in general such a 
residue will have the same facility for admitting a circuit as does an isolated 
node, depending on the set of circuits found in the polyhedron. Thus, except 
for CGDIGDFD (Grace’s 16-S) all the polyhedra where n 5 16 have this 
property. Hence for finding circuits, any other 3-connected region can be re- 
placed by a single node. By induction only the 44 forms counted in Table 1 
need be considered for ns 18. 
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CGDIGDFD, (Fig. la) which is the same as Tutte’s graph Nz [4], has three 
(symmetricall\, equivalent) edges that are obligatory in any Hamilton circuit 
It is the simplest with such a property. 

Tutte produced a 46-node circuit-free graph by replacing three nodes of a 
tetrahedron uith 3 15node residues so that 3 obligatory edges converged on 
one node in a self-contradictory way. Along the same lines a 3%node, circuit- 
free graph can be composed by replacing two nodes of CFDEC, the pentagonal 
prism, with two 15node residues so as to confront two obligatory edges with 
two that, as pointed out by Tutte, are mutually exclusive. In an independent 
study, David Rarnette has already discovered this graph [6]. 

FIG. 1. Composition of non-Hamiltonian polyhedra. (a) 16CGDIGDFD which is Tutte’s 
graph iV2[4]. The marked edges are obligatory in any circuit. (b) a l&node residue with an obliga- 
tory edge as marked. (c) and (d) are two non-Hamiltonian polyhedra of 46 and 38 nodes respec- 
tively. 

If we accept the enumeration of polyhedra for n 5 16, on which Grace con- 
curs with Bruckner [7], or merely that we know the 4-connected cases (as in 
table 2), a similar line of reasoning leads to an inferential argument for the 
conclusion that every 1%node polyhedron has a circuit. (We should say, more 
precisely, cyclically 4-connected as defined by Tutte [S] : ‘(a cyclically k-connected 
graph cannot be broken up into two separate parts, each containing a polygon, 
by the removal of fewer than k edges.“) Each of the graphs was searched by a 
computer program for subgraphs obtained by extracting any node-pair, and the 
circuit-forming properties of the subgraphs examined. None of the subgraphs 
was of a kind that would disqualify a pairwise combination of them from con- 
taining a circuit (cf. Tutte’s arguments [g]). On the other hand, from Euler’s 
formula, every 1%node polyhedron must (a) contain no 3-connected and at least 
one 4-connected subgraph which has 14 or fewer nodes, and would therefore 
fall within the scope of the search, or (b) is derived from a graph with at least 
one 3-connected region, a case already disposed of through n = 16. The further 
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TABLE 2. Listing of Hamilton circuits 

(Included are convex trivalent polyhedra with n 5 18 vertices. Only polyhedra with no triangular 
face are listed. See text for code. Each character group stands for orle polyhedron.) 

* marks 3-connected forms; the remainder are 4-connected. 

Vertex 
COU?Ll 

Grace’s 
Catalog 
[5] No. 

Code 
Grace’s 
Catalog 
[5] No. 

Code 

8 2 CECC 
10 5 CFDEC 
12 6 CGEGEC 

11 CHFCFL, 
14 6 CJHECGE 

7 CJGDHFC 
8 CIGDHFD 

15 CHFIGEC 
46 CKEIECC* 

16 42 CMJFDIFC 
43 CLDKDECD 
44 CLIFJCGD 
52 CLIFCIGC 
54 CLDECEEC 
55 CGDIGDFL) 
60 CLJGECHF 
61 CJHKDHFD 
62 CKIECIGC 
IO CMKDGECF* 
88 CM DKFCEC* 

112 CIGKIGEC 

18 186 CNEMFCFCD 
195 CNDMEGECE 
196 COLCGEI t:C 
198 CXKIILECIII~ 
233 C.\‘l)FCGI)I~I) 
326 COEMIFCFC* 
32s CNT)‘\iDFDFC 
329 CNLDHECHI) 
347 CNLDHFLIHF 
348 CNLIFL>JHC 
350 CODGEHFDE 
353 CLJGDKIGD 
354 CMJGLDIGI) 
356 CODGDHFCE 
362 CLJFDKIGC 
376 CNJGEKIFD 
383 CNIFLJGEC 
392 COMCIFCHC* 
393 CNKHFDJHE 
401 COKHECJGC 
418 CMKGEKIGC 
419 CMKHFDJHF 
426 CNLIGECIG 
427 CKIMKDHFD 
428 CMKGECJHC 
429 COCDGEHEC 
477 CNLDGECHC* 
493 COMELGECD* 
505 COCCEIECC rl; 
508 CNGMKGECD* 
509 CODMHECFD* 
625 CODMCFCEC* 
626 CODMIECFC* 
887 CJHMKIGEC 

application of this technique should make it possible to anticipate the smallest 
non-Hamiltonian polyhedron from the properties of the 4- and S-connected 
polyhedra of the next lower order. Since these, by definition, all have circuits, 
it would be feasible to generate them on the computer by reasonably efficient 
combinatorial schemes to whiitever order is required. 
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Appendix: Algorithm for finding Hamilton circuits of a r>.clic ~ra~)h. 

This is illustrated for an undirected, trihedral grap;: but should be general- 
ized without difficulty in au obvious way. The input is a description of the con- 
nectivity of the graph. The essence of the routine is to build a table of sets of 
edges so that just two edges incident on each node appear in an!’ row of the 
table. The first node is chosen arbitrarily. Its three incident edges are marked 
current and open. The circuit-fragment table is started Lvith three ro\\-s by listing 
the 3 pairwise choices among the current edges. 

1. Select an open edge. The two adjacent edges become the trial edges. 
2. How many trial edges match the current list: none, one, or t;\.o? 

a. If none match, close the selected eclge and replace it on the current 
open list by the two trial edges. Scan the circuit-fragment table. Each 
row in which the selected edge appears is replaced l)y two rows, one 
for each trial edge. Each remaining row is replaced by one row showing 
both trial edges. Go to 1. 

b. If one matches, a circuit of the graph has been closed. Scan the circuit- 
fragment (c.f.) table contrasting the matched edge with the selected 
edge. Each c.f. where neither appears is deleted. If one of the two ap- 
pears on a cf., this is augmented by the trial edge. If both appear, the 
c.f. row stands as is unless a tracing of the c.f. shows it to be prema- 
turely closed, whereupon it is deleted. Go to 1. 

c. If both match two adjacent faces of the graph have been closed. The 
preceding subroutine is revised in an obvious way to close out both 
matched edges: those c.f. rows are retained which are compatible with 
the indicated edge allocations. Go to 1. 

The process is terminated when the open edge list is vacated. If this leaves 
some nodes unused, no Hamilton circuit is possible. Otherwise, the final closure 
of circuit-fragments leaves a table of circuits. This must still be scanned to 
separate the Hamiltonian circuits from the set of pair\\-ise disjoint circuits. 

The efficiency of the algorithm depends on keeping the current c.f. table as 
small as possible. This is accomplished by a lookahead routine which scans 

’ prospective choices of current edges to seek the promptest closure of a face. 
For an example, Tutte’s 46 node non-Hamiltonian graph has been searched 

exhaustively. This required a c.f. table of 12,477 rows consuming 29 seconds of 
a program on IBM 7090. Searches yielding all the circuits of other large 
Hamiltonian graphs required a comparable effort. 

This procedure may have some utility for studies on classification, iso- 
morphisms, and symmetries of abstract graphs and other network problems for 
which the set of Hamilton circuits is often an advantageous approach. A cotn- 
plete description of the computer program is available from the author. 

This work has been supported by a grant from NASA (NsG 81-60) for studies on automated 
experimental analysis. Computations were run on an IBM 7090 at the Stanford Computation Cen- 
ter with support from the National Science Foundation, under grant NSF-GP-948. 
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